Best Chess
Wednesday, 29 July 2015

It's on Kongregate:
http://www.kongregate.com/games/pippinbarr/best-chess

Released into the wild in general today, completely forgetting to notify Kill Screen, like
a klutz.

Nice to have it tidied away though. Seems like | designed and built and released this
in a week in July? Beat the July deadline to have something out and about. Feel good
about that. Next up is? Probably a breakout game. BREAKSOUT might be the most
fun? Need to solve the mobile problem or at least try to.

That's thats.

Sunday, 26 July 2015

Okay | think it works. | still need to

* Add some Ul feedback while calculating black move (probably display game
outcomes?)

* Make it look alright on mobile if possible

http://www.kongregate.com/games/pippinbarr/best-chess

Saturday, 25 July 2015

Why don't | understand anything easily?

Friday, 24 July 2015

Ah, propagation.

(Also, remember that at the very top level you need to remember the ACTUAL MOVE

to make in the case of the WIN or DRAW outcomes, in the first case because you play
on, and in the second | suppose if white refuses the draw...)

SO
10 Get all possible moves in the active position
20 IF the 'next move' indicator is still valid (there is another move in the list to try)
IF this is the first possible move in the list
push current value of "?" to this depth
make the next move
increment next move indicator
IF the move means game over
IF active player WIN
Change current value of this depth to “b" or "w" (depending on
winner)

(And remember WHICH MOVE this is, so need to store pairs)
Stop searching at level of this move (which is now a win)

/| This is integrate up (special short circuit case)

Undo move (because no more searching at this level)
pop value (and remember)
Propagate value up
IF current level == "?" THEN make it the popped value
(This is the only case, because we're talking about the value of
the
opponent’s move here, and if there's already a draw you'd keep it
and
if there were already a win, we wouldn't have got to this search)
IF active player LOSS or DRAW

IF current value == "?" && LOSS

Change current value of this depth to “b"” or "w" (depending on
loser)

ELSE IF current value == "?" || loss for this level &% DRAW

Save this level as a "d"

Undo move
GO TO 10

ELSE IF game not over

GO TO 10?

30 ELSE IF the 'next move' indicator is too big
(you have exhausted all possible moves at this level)

IF you are at the very top

note final outcome (WIN, LOSS, DRAW)

IF win THEN make winning move
ELSE IF loss THEN resign
ELSE IF draw THEN offer draw

ELSE IF not at the top

/| This is basically the ‘integrate up’ function

Pop the depth value

Undo the last move (to go one up the depth)

Integrate the depth value at this level based on active player
(e.g. active win means stop searching, draw > loss)

propagate the current ‘final’ outcome UP

GO TO 10

Both sides are assumed to play perfectly (even though white might well not, being a
human). Thus after white’s move either:

* Black resigns (because every move results in a white win with perfect play)

* Black offers a draw (because every move results in a draw with perfect play)

* Black plays a move (which leads in every case to a black win)

How does black establish which of these three things to do?

Basically you need to go to the bottom of the game tree and then propagate wins,
draws, or losses back up the tree, reacting appropriately to each one:

* If you find a win for BLACK then remember this as the ‘current state of the game’,
but assume white won't make their previous move, undo it, and try the next one.

*If you find a win for WHITE then remember this as the current state of the game,
but black won't make its previous move, so undo it and try the next one

* If you find a DRAW then remember this as the current state of the game and
keep searching?

Is that it? | think it's probably worse than this.

There's something else here, which is that black is searching only for WINS or DRAWS
, as soon as it finds a LOSS in any game it has to give up on the move that it made that
led to it completely (i.e. you don't need to check any of WHITE's other moves becaus

e you assume white would play perfectly and find that winning move). You basically ha
ve to search every version until you find a LOSS, but if you don't and you found one D

RAW, then that move is a DRAW move, and if it's ALL WINS, then that's the perfect mo
ve, but you then have to go on considering because of course then WHITE wouldn't h

ave played the move that led to that branch (and, rather, ALL moves ensuing from whit
e's move must lead to a WIN for black, or draws...)

So when you find a BLACK LOSS you then UNDO white's move (to win) AND back's m
ove (to get into that position in the first place)... but isn't this what I'm already doing? |
'm confused?

ON WHITE MOVE: GO TO 1
1 CHECK current move index
*|F IN RANGE
MAKE MOVE
INCREMENT MOVE INDEX
PUSH NEW MOVE INDEX OF O TO INDEXES
* |F GAME OVERXx
UNDO MOVE

POP MOVE INDEX
GO TO1

* ELSE
GO TO1

* ELSE IF NOT IN RANGE
(played all possible moves at this depth)

*|IF DEPTHIS O
(all games examined)

MAKE HIGHEST VALUED MOVE (RANDOM TIE-BREAK)
(should this actually be offer a draw, resign, etc.?)
WAIT FOR WHITE MOVE

*ELSE IF DEPTHIS >0

UNDO MOVE
POP MOVE INDEX
GO TO1

In The Beginning:
You play as white, you make a move, the game solves chess before replying.

EVALUATION

If you do -1 for a loss, O for a draw, and 1 for a win, then you might imagine that you'd
be able to store the ‘value' of any particular tree of play (from the second move)
within an integer maybe? Which would make life easier. Is that a safe assumption?
Anyway the big question is whether you can actually store the value of one of the
trees coming from white's first move. Seems like there's on the order of 10120
games all up, how much is this reduced by knowing the first move?

MOVE LIMIT

It would be an option to set a 30-40 move limit (reaching it being a draw) to control
the really deep stuff that explodes everything (even more)? | guess that would help
out? Or just live with the 50 ‘eventless’ move limit thing?

TECH LIMIT

Rather than worry about storage could also just embrace the potential impossibility of
storing the score successfully and write it down to a technological limitation (much
like the time limit?) — but this is kind of unsatisfying because | kind of want the point
to be the tech ISN'T limited, that it will just go ahead with it and “would be able to” if
given enough time.

In fact it's probably fine to ‘encode’ the number in a string? But then I'd have to
implement the addition/subtraction myself? Which sounds assy? But is probably not
that bad? And then it would be ‘no problem’ to store large enough numbers.

